Newcomposers.ru

IT Мир
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сколько ватт потребляет жесткий диск

Сколько ватт потребляет жесткий диск

Войти

Энергопотребление 3.5» жёсткого диска

Я решил поплотнее разобраться с ситуацией, когда БП не хватет для полдюжины дисков. HDD заслуживают отдельного поста.

Начнём с WD. Эта уважаемая компания вообще решила, что чем потребитель меньше знает, тем лучше, и публикует всё меньше и меньше технической информации о жёстких дисках. Поэтому продукты WD оценим по тестам.


Рис из статьи. Энергопотребление 4 моделей дисков компании WD (напомню, Hitachi Global Storage Technologies — подразделение WD).
Темный тон — мощность, потребляемая по 5В и нижняя цифра; светлый тон — по 12В; верхняя цифра — суммарная мощность. UPD Прим. см также 1-ый коммент к этому посту, от scream_r
При чтении, записи и случайном чтении на 5В цепь приходится от 26% до 74% энергопотребления, в среднем — 45%

Давайте посмотрим на актуальные диски Seagate, Seagate Desktop HDD, Product Manual, ST4000DM000,ST3000DM003 — это новейшие 4 и 3 терабайтные диски, стр 15.

Table 2 DC power requirements (3TB and 4TB)
Power dissipation Avg (watts 25° C) Avg 5V typ amps Avg 12V typ amps

Sleep 0.750 0.138 0.005

При работе по 5В потребляется 32% мощности. Приятно, что паспотрные цифры по Seagate в целом бьются с замерами на дисках WD.

(Позже нам понадобится ещё один параметр, стр 16, Voltage tolerance (including noise): 5V ±5%; 12V ±10%.)

Это были установившиеся средние цифры. Чтобы увидеть пиковые, нужны осциллограмы. Раньше их публиковали, ср Product Manual Barracuda 7200.7 Serial ATA — это довольно старые (

2003 г) диски.
На стр 8 (с сокращениями)
Table 5: DC power requirements (example of 160GB and 200GB models not supporting NCQ)
Power dissipation Average (watts, 25° C) 5V typ amps 12V typ amps
Spinup — — 2.8 (peak)
Idle 7.5 0.482 0.424
Operating 12.1 0.638 0.739
Standby/Sleep 2.0 0.367 0.014

Стр 9 — осцилограммы энергопотребления по 5 и 12 В


Из них видно, что в таблицах не зря упомянут усреднённый ток. При работе по 5В он заявлен 0.638 А, но похоже, реально он принимает только значения 0.45 и 0.95А (+48%), между которыми колеблется. Полагаю, одно из значений соответствует считыванию, а другое — поиску (не поручусь — куда большее, а куда — меньшее ;). При раскрутке диска по 5B пиковое потребление превышает среднее рабочее более чем вдвое.

Картинка по 12В зрительно похожа, но здорово отличается по цифрам. При работе мгновенное значение тока часто оказывается возле нуля, а максимальное лишь незначительно превосходит заявленное в таблице. На старте указанные 2.8А по 12B, судя по графику — именно пиковые, достигаемые на столь короткие доли секунды, что на графике таких токов и не видно.

За последние годы конструкции дисков сильно продвинулись. Но не изменился характер работы диска — позиционируем головку, читаем, позиционируем, читаем. Поэтому разумно ожидать аналогичных в % цифр для пиковых значений токов.

Если вернуться к первому рисунку, то можно видеть, что у дисков WD здесь полный разнобой. Две актуальных модели при раскрутке потребляют в основном 5B, две — 12В. Так, зелёный 3 тербайтник 84% энергии при старте потребляет по 5И (можно было бы счесть опечаткой, но соседняя модель — 80%)

Итого вывод — при работе современный 3-4 Tb диск в среднем половину (до 74%) мощности потребляет по 5В. При старте диска доля потребления по 5В может превышать 80% в зависимости от модели.

Методика измерения энергопотребления жёстких дисков

Введение

Традиционно основными характеристиками жесткого диска, достойными подробного рассмотрения в обзорах, считаются его ёмкость и производительность – конечно, оба параметра (а особенно второй) хоть и имеют много разных аспектов, но по большому счёту, всё внимание авторов обзоров сводится к этим двум пунктам.

Такая же характеристика жёсткого диска, как его энергопотребление, долгое время оставалась за кадром. Казалось бы, она несущественна – ну на что может повлиять десяток ватт, когда современная видеокарта или процессор потребляют на порядок больше? – однако это не совсем так.

Во-первых, в последнее время тема энергосбережения стала весьма популярна среди производителей – скажем, новый стандарт Energy Star 4.0 указывает, что жёсткий диск должен потреблять в простое не более 7 Вт или не более 14 % от общего потребления компьютера (с учётом развитых режимов энергосбережения современных процессоров, 14 % от общего потребления офисного ПК в режиме простоя могут оказаться не такой уж большой величиной). Обусловлено это многими факторами – борьбой за экологию, проблемой постоянной нехватки мощности энергосистем в промышленно развитых странах, стремлением сократить счета за электроэнергию. Конечно, в масштабах одного компьютера экономия невелика, но если вспомнить, что в одном офисном здании в наше время могут стоять сотни компьютеров – цифры получаются вполне весомые.

Во-вторых, и это более значимо в, так сказать, наших персональных масштабах, энергопотребление винчестера равно его тепловыделению, тепловыделение при прочих равных условиях определяет его температуру, а температура – время наработки на отказ. Например, если обратиться к весьма известному исследованию компании Google » Failure Trends in a Large Disk Drive Population » (формат PDF, 242 кбайта), то увидим, что для новых винчестеров вероятность выхода из строя от температуры зависит слабо – а вот для уже отслуживших три года она резко увеличивается, если температура превышает 40°C.

Соответственно, выбрав более экономичный диск, мы при прочих равных условиях обеспечим меньшую его температуру – и большую надёжность в долгосрочном периоде. Особенно это важно для компактных microATX-корпусов, многие из которых не имеют возможности установки отдельного вентилятора для обдува жёстких дисков; впрочем, даже в полноразмерных корпусах при установке трёх-пяти дисков проблема их нагрева становится существенной.

В-третьих, жёсткие диски применяются не только в настольных компьютерах, но и в ноутбуках – до перехода на твердотельные флэш-накопители (SSD, Solid State Drive) нам всем ещё далеко. И хотя и в ноутбуке винчестер является далеко не самым прожорливым компонентом, совсем забывать о нём не стоит: свою лепту в продолжительность работы при питании от аккумулятора он вносит.

В-четвёртых, многие пользователи покупают 2,5″ жёсткие диски для использования в качестве переносных накопителей – в коробочках с USB-интерфейсом. Многие из подобных коробочек не имеют дополнительного питания, в то время как один разъём USB может обеспечить ток не более 500 мА – и в случае с некоторыми винчестерами, потребляющими больший ток, это приводит к проблемам: диск может работать нестабильно или же не распознаваться компьютером вообще.

Особенный же интерес измерениям энергопотребления винчестеров придаёт наметившаяся тенденция к гонке за экономичностью среди их производителей – так, буквально на днях компания Hitachi объявила о выпуске экономичных жёстких дисков Deskstar P7K500, предназначенных для настольных компьютеров, но при этом использующих технологии энергосбережения, уже отработанные в ноутбуках.

В данной статье мы укажем некоторые проблемы, возникающие при экспериментальном измерении энергопотребления жёстких дисков, и методы их решения. Описанная ниже методика будет в дальнейшем регулярно использоваться нами в тестах жёстких дисков.

Методика измерений

Для проведения точных измерений энергопотребления жёстких дисков мы собрали несложную электронную схему, позволяющую нам регистрировать ток произвольной формы, меняющийся с высокой частотой. Основная проблема заключается в том, что для таких измерений традиционно используется осциллограф – однако на его вход надо подавать напряжение, а не ток. Соответственно, нам нужен преобразователь ток-напряжение:

Для аккуратного измерения тока, меняющегося с большой скоростью, мы используем осциллограф Velleman PCSU-1000 , регистрирующий напряжение на выходе описанной выше схемы. Временная развёртка осциллографа устанавливается равной 0,5 мс/дел. (частота оцифровки 250 кГц, что достаточно для регистрации сигнала с частотой до 125 кГц), чувствительность – 0,5 В/дел. Развёртка осциллографа работает в автоматическом режиме, а снимаемые им осциллограммы передаются в специально написанную для их обработки программу, пересчитывающую полученные с осциллографа вольты в амперы по указанной выше формуле и подсчитывающую среднее и максимальное значения. На каждом этапе измерений для получения максимально точного результата снимается по 180 осциллограмм (измерения длятся 60 секунд, каждую секунду программа запрашивает с осциллографа по 3 осциллограммы), каждая осциллограмма имеет длину 4000 точек – то есть, итоговый результат рассчитывается по 720 тысячам замеров мгновенного потребляемого тока. При необходимости количество измерений можно увеличить. Так как упомянутый осциллограф – двухканальный, то, используя два преобразователя ток-напряжение, можно одновременно измерять потребление жёсткого диска по шинам и +5 В, и +12 В.

Читать еще:  Как объединить пк в локальную сеть

Описанная система подключается к жёсткому диску прямо в компьютере – в разрыв цепи питания. Данное обстоятельство позволяет без проблем измерять энергопотребление винчестеров под любыми типами нагрузок, которые мы можем смоделировать в тестах – например, в IOMeter.

Мультиметр против осциллографа

Но, спросят читатели, зачем такие сложности – усилитель, осциллограф, дополнительные программы. Ведь можно же взять обычный цифровой амперметр или мультиметр – и измерить все нужные токи им.

Увы, сколь-нибудь адекватные результаты с мультиметром можно получить только в простое, когда головки диска неподвижны. Для иллюстрации причины этого мы сняли осциллограмму потребляемого винчестером Maxtor Atlas 15K II тока при его тестировании в IOMeter в тесте «Random read». Красный цвет соответствует току, потребляемому по шине +5 В, синий – +12 В, уровень нуля отмечен чёрной горизонтальной линией, горизонтальная развёртка равна 5 мс/дел.:

Основная часть энергии, потребляемой диском по шине +12В, затрачивается на перемещение головок; импульсы идут парами: первый соответствует началу движения головки (разгон), второй – окончанию (торможение). Расстояние между ними варьируется от почти нуля до времени, необходимого на перемещение головки от одного края диска до другого – в зависимости от того, насколько диску «повезло» с двумя идущими подряд запросами. Перед началом перемещения головок видно также увеличение энергопотребления по шине +5 В – это активизируется электроника диска, «обдумывающая» очередной запрос.

Впрочем, нас интересует не столько механика работы винчестера, сколько характеристики импульсов. Как вы видите, во-первых, их амплитуда очень высока (в 4-5 раз больше постоянной составляющей), во-вторых, передний фронт почти вертикален, а продолжительность всего импульса может составлять менее миллисекунды. Каковы шансы «поймать» этот пик мультиметром?

Увы, они равны нулю. Мультиметры – это устройства, в основе своей предназначенные для работы с постоянным напряжением (и, соответственно, постоянным током), в них попросту не используются быстрые АЦП, ибо в этом нет никакого смысла. Типичный мультиметр осуществляет измерения с периодом порядка нескольких десятых долей секунды, что на два порядка (!) больше продолжительности импульса тока, порождённого перемещением головок жёсткого диска.

Для большей наглядности мы разложили представленную выше осциллограмму в спектр:

Как вы видите, в данном случае мы имеем большой пик в нуле (постоянная составляющая тока), довольно высокий и более-менее постоянный уровень в диапазоне до нескольких десятков килогерц, высокий всплеск на 42,8 кГц – и ещё один всплеск на 85,6 кГц. Соответственно, чтобы адекватно измерить параметры такого сигнала, нам нужно устройство, способное работать с частотами хотя бы до 100 кГц – и мультиметр к подобным явно не относится.

Для проверки этой теории мы использовали два почти случайным образом выбранных мультиметра – недорогой Mastech M890G и более серьёзный Uni-Trend UT70D . Последний, помимо прочего, обладает функцией индикации среднего, минимального и максимального значений за заданный отрезок времени.

Итак, снова запускаем IOMeter, режим «Random Read», жёсткий диск Maxtor Atlas 15K II – и под стрекот головок смотрим, что покажут нам мультиметры. Так как каждый из них может измерять только одно значение (в отличие от двухканального осциллографа), то подключали мы их к 12-вольтовому каналу.

На первом из них, Mastech M890G, понять что-либо трудно – значение на экране постоянно скачет, в максимуме достигая примерно 2,9 В, в минимуме проваливаясь примерно до 2,4 В. Пользуясь приведённой выше формулой, мы без труда переводим замеченные числа в ток потребления: от 0,84 А до 1,32 А. Уже здесь ясно, что мультиметр явно привирает: на осциллограмме выше отчётливо видно, что разница между максимальным и минимальным значениями намного больше полутора раз; выделить же из скачущих цифр среднее значение и вовсе невозможно.

К счастью, у нас есть ещё UT70D, который умеет среднее значение подсчитывать аппаратно – более того, он ещё может и передавать данные на компьютер по интерфейсу RS-232, так что результаты измерений мы представим сразу в виде снимка экрана:

Слева вы видите окно нашей собственной программы, обрабатывающей данные с осциллографа, справа – окно программы, получающей данные от мультиметра. На последнем большими цифрами указано среднее значение, ниже можно увидеть максимальное и минимальное значения. Мультиметр переключался в режим подсчёта среднего значения одновременно с запуском нашей программы и находился в этом режиме те же 60 секунд, что длился набор данных с осциллографа.

Итак, по показаниям мультиметра: среднее потребление – 1,06 А, максимальное – 1,13 А. По результатам обработки данных с осциллографа: среднее потребление – 1,04 А, максимальное – 2,71 А. Как видите, мультиметр довольно точно показал среднее значение, но, увы, ни одного пика потребления «поймать» так и не смог.

При этом, вообще говоря, нельзя даже сказать, что любой цифровой мультиметр будет правильно показывать хотя бы среднее значение: мы лишь экспериментальным путём установили, что конкретно наша модель UT70D конкретно на данном винчестере показывает весьма похожее на правду число. Будут ли столь же адекватны показания других мультиметров или хотя бы этого же мультиметра на других винчестерах (то есть с другим характером потребляемого тока) – мы не знаем.

И, разумеется, пытаться измерять мультиметром пиковые значения вообще бессмысленно. В нашем случае они даже близко не похожи на правду; более того, если ваш мультиметр вдруг показывает большие значения, из этого никак не следует, что он их показывает правильно – эту правильность можно установить лишь в результате сравнения с полноценной измерительной системой на базе осциллографа, а если у вас есть такая система, то зачем пользоваться мультиметром.

Диета НЖМД 2: потребление и тепловыделение жестких дисков класса Enterprise

Энергопотребление и тепловыделение современных накопителей на жестких магнитных дисках, имеющих, как правило, значительно меньший диапазон рабочих температур (от +5 до +55 градусов Цельсия, реже от 0 до +60 С), чем большинство других компьютерных компонентов — это одна из проблем, на которую пользователи все чаще обращают внимание. Производительность жестких дисков растет, как и скорость процессоров или графических ускорителей. Но, к счастью, здесь нет того бурного роста тепловыделения (с увеличением быстродействия), который наблюдается у центральных и графических процессоров в последние лет десять. Тем не менее, общие требования по экономии электропитания и по лимитированной нагрузочной и охлаждающей способности конкретных компьютерных шасси все чаще заставляют пользователей задумываться и о том, сколько «кушают» их винчестеры. Причем, данные вопросы задаются не только пользователями (и производителями) ноутбуков, где каждые полватта способны повлиять не только на температуру накопителя в узком и плохо вентилируемом пространстве, но и на время автономной работы всего ноутбука (за которое обычно всеми силами борются). И не только потребителями и сборщиками настольных персональных компьютеров, где вследствие резкого роста прожорливости процессоров и видеокарт на винчестеры остается лишь крупица мощности бюджетных блоков питания.

Но вопросы потребления и тепловыделения накопителей все настойчивее волнуют и тех, кто по долгу службы работает с высокопроизводительными профессиональными средствами хранения данных на жестких дисках, принадлежащих к так называемому сегменту Enterprise, то есть дискам для корпоративных применений. Помимо прочего, здесь играет роль и то, что надежность и долговечность работы этих накопителей существенно зависит от их рабочей температуры — исследования показывают, что повышение температуры жесткого диска на 5 градусов оказывает такое же влияние на надежность, как переход от 10-процентной к 100-процентной загрузке диска работой! А каждый градус его температуры вниз эквивалентен 10-процентному росту времени жизни накопителя. Применение же мощных охлаждающих систем не всегда оправдано ввиду их большого шума и немалой стоимости. В целом же, экономия и экономичность — это те факторы, о которых никогда не следует забывать при принятии решений. Поэтому наша попытка в очередной раз обратиться к теме энергопотребления и тепловыделения жестких дисков в практической плоскости носит не только «познавательный», но и чисто прикладной характер.

Читать еще:  Как усилить вайфай сигнал

Напомню, что ранее мы уже рассматривали на систематизированной основе вопросы энергопотребления и тепловыделения трехдюймовых жестких дисков для настольных компьютеров и производительных двухдюймовых накопителей для ноутбуков. И будем возвращаться к этой теме еще не раз. Но сегодня пришла пора поговорить о наиболее дорогих и критичных к отказам (в том числе, из-за перегрева или проблем с питанием) накопителям Enterprise-сегмента, к коим мы вслед за производителями причисляем жесткие диски форм-факторов 3,5 и 2,5 дюйма со скоростью вращения 10 и 15 тысяч оборотов в минуту и интерфейсами Ultra320 SCSI и Serial Attached SCSI (SAS) (Fibre Channel пока оставим в стороне). А также определенные профессиональные модели со скоростью вращения 7200 об./мин, интерфейсом Serial ATA (позднее SATA 2.5) и высокой емкостью (400-500 Гбайт, пока недоступной SCSI-моделям), выполненные на базе существующих настольных винчестеров этих же производителей, но слегка модернизированных по конструкции и управляющей микропрограмме с целью повысить надежность и улучшить работу в профессиональных задачах. К последним, то есть к профессиональным жестким дискам с интерфейсом Serial ATA и скоростью вращения 7200 об./мин., мы отнесем традиционные серии Maxtor MaXLine III и MaXLine Pro 500 (а также более раннюю MaXLine II), недавно появившуюся Seagate NL35 (проф. аналог старших моделей Barracuda 7200.8 и 7200.9), а также Western Digital Caviar RE и RE2 (в частности, недавно появившуюся 400-гигабайтную модель WD4000YR). К сожалению, Hitachi GST не выделяет свои диски Deskstar 7K400 и 7K500 (объемом 400 и 500 Гбайт соответственно) в «профессиональную» линейку, хотя по многим характеристикам они могут быть к ней причислены. Поэтому мы в данном обзоре привлечем к рассмотрению и их, наряду с вышеперечисленными семитысячниками и всеми текущими SCSI-сериями, обзор которых сделан нами, например, в недавней статье. Кроме того, здесь примет участие и первый (из реально появившихся в России) из дисков с SAS-интерфейсом — Seagate Cheetah 15K.4 SAS.

Подробные обоснования нашего подхода к анализу энергопотребления и тепловыделения жестких дисков (и почему в единицах мощности это практически одно и то же) вы можете найти в нашем предыдущем обзоре на эту тему. Поэтому без лишних слов переходим к цифрам. Напомню лишь, что мы сознательно не будем использовать температуру жестких дисков как меру их тепловыделения, поскольку, на наш взгляд, делать это в типичных случаях просто бесполезно, то есть почти не имеет практического смысла (обоснование нашего подхода см. по лику выше). Кроме того, измеряя энергопотребление (вместо температуры), мы получаем ряд полезной дополнительной информации.

Спецификации энергопотребления жестких дисков

Чтобы нам было, от чего оттолкнуться, в таблице 1 приведу данные по энергопотреблению основных серий профессиональных дисков, указанные в их спецификациях.

Таблица 1. Мощность энергопотребления (ватт) жестких дисков для профессиональных применений (согласно спецификациям)

Сколько ватт потребляет жесткий диск

Стандартный винчестер потребляет относительно немного электроэнергии, при включении в работу за счет пускового тока потребление жесткого диска ограничивается 5 – 30 Вт, в режимах работы и ожидания потребление электроэнергии до 1 Вт.

Потребление энергии жестким диском зависит от скорости вращения, чем быстрее работает винчестер, тем больше энергопотребление. В свою очередь, потребление электроэнергии влияет на температуру накопительного устройства, от которой зависит долговечность и надежность жесткого диска. 1 о С температуры накопителя эквивалентен его 10% росту рабочего срока жизни.

Поэтому логичнее предположить, что энергопотребление жесткого диска связано не с экономией электроэнергии, а его долговечностью и надежной работой. Если экономить, то нужно просто отключить все дополнительные порты, снизить уровень охлаждения и т. д.

Таблица №1. Потребление мощности различными моделями жестких дисков в разных рабочих режимах

Для вычисления энергопотребления накопителей, применяемых в профессиональной сфере необходимо рассмотреть по их полной загруженности и работе с различными скоростями вращения шпинделя и спецификациями SCSI, SAS.

Спецификации по энергопотреблению указывают паспортные данные производителей с нижними и верхними или типичными значениями потребления мощностей, они зачастую не соответствуют действительному потреблению электроэнергии, поэтому было проведено контрольное тестирование некоторых образцов «винчестеров».

Тестовое исследование энергопотребления жесткого диска

На контрольном тесте использовалась следующая комплектация:

  1. Процессор Pentium 4
  2. Материнская плата Gigabyte GA-8KNXP Ultra-64
  3. Две линейки системная память на 256 Мбайт DDR400
  4. Основной накопитель Maxtor 6E040L0
  5. Блок питания на 400 ватт

Измерение проводилось в режиме простоя при обычном вращении (Idle), чтении (Read), поиске (Seek), записи (Write), и при тихом поиске. Производился замер нагрузки при пуске во время включения (Start). Измерение этих параметров позволяет получить наиболее точную картинку по энергоэффективности и по минимальному нагреву «винчестеров». Задание на выбор режима работы жесткого диска определяется в программе AIDA32 Disk Benchmark в Windows XP Professional SP2.

Таблица №2. Энергопотребление накопителей в различных режимах

Тест показывает, что накопитель, использующий интерфейс SAS потребляет гораздо больший ток чем с жесткий диск с интерфейсом SCSI примерно от 200 до 470 мА или 1 – 2,4 Вт.

Самые энергоэкономичные диски – это WD Raptorскорость вращения шпинделя 10000 об/мин и Seagate Barracuda 7200, контроллер, используемый этими дисками во время передачи данных использует только 2,5 Вт.

Результаты тестов дают возможность убедиться, что соответствие данных паспорта с действительными происходит только в режиме Idle.

Самая большая нагрузка жесткого диска происходит в стартовом режиме до 30 Вт.

SCSI-диски Fujitsu являются лучшими по энергопотреблению для использования в персональных компьютерах, они укладываются в мощность до 14 Вт.

Формулы расчета энергопотребления жесткого диска

Ток потребления в режимах работы из вышеприведенной таблицы помноженный на процент занятости по времени нахождения в соответствующем режиме работы.

Энергопотребление зависит также от операций ввода и вывода,или блока случайного доступапри использовании шины +5 В, накопитель потребляет значительно большую мощность чем при поиске, используя шину +12 В – наоборот, из-за увеличения времени перемещения между блоками чтения и записи.

В использовании экономичных жестких дисков весьма заинтересованы большие серверные системы, имеющие в своей комплектации не одну сотню или даже тысячи накопителей. Пользователи, рассчитывающие сделать на своем компьютере эффективный апгрейд также, могут задуматься об использовании экономичной модели, жесткие диски WD могут составить конкуренцию многим моделям накопителей.

Сколько энергии потребляет материнская плата и центральный процессор

Потребление материнской платой складывается из энергопотребления всеми устройствами, составляющими ее комплектацию, в нее входят стабилизаторы напряжения, контроллеры и мосты, от «материнки» зависит энергопотребление памяти и центрального процессора. Материнская плата может потреблять от 10 – 15 Вт до 30 – 50 Вт.

Энергопотребление процессора обуславливается работой стабилизаторов напряжения, включенных в состав материнской платы, и составляет от12 – 30 до 30 – 50 ватт.

Онлайн-калькуляторы для определения мощности ПК — теория и практика

Узнать мощность своего компьютера можно по-разному: вооружиться мультиметром и тестировать вручную или зайти на онлайн-калькулятор и посчитать все за 5 минут. Последние выдают результаты автоматически — вбиваешь свои данные и готово. А мы в этом материале проверяем онлайн-калькуляторы на честность. Какие из них выдают более точные данные, какими проще и удобнее пользоваться? И стоит ли вообще доверять готовым алгоритмам или лучше все перепроверить самому?

Тестируем реальную мощность ПК

Перед проверкой калькуляторов сначала нужно определить реальную мощность ПК. Тестируем пару персональных компьютеров двумя способами:

  • Амперметром ACM91 измеряется ток по выходным линиям блока питания. Далее рассчитывается, затем суммируется мощность.
  • По входу блока питания (220 В) измеряется мощность. В этом случае делается поправка на КПД блока питания и используется как справочное значение.

ПК нагружались тестом стабильности от AIDA, видеокарта — дополнительно стресс-тестом от FurMark. Все компоненты ПК работали в штатном режиме, без разгонов. Для видеокарты была установлена максимальная производительность из предложенных производителем Profiles.

Конфигурации ПК1 и ПК2

Комплектующие

ПК 1

ПК 2

SSD A-Data SX6000 Pro, 256 ГБ, М.2 2280

Измеренная потребляемая мощность ПК

ПК1

ПК2

U12CPU —линия питания процессора;

(I5-8400, TDP 65 Вт)

(I5-4460, TDP 84 Вт)

191 Вт

Тесты онлайн-калькуляторов мощности

Калькулятор от Bequiet

Онлайн калькулятор от известного производителя солидных блоков питания Bequiet.

Разработчики калькулятора не стали мудрить и предусмотрели в калькуляторе расчет только по четырем основным компонентам: процессор, видеокарта, система и охлаждение.

Читать еще:  Есть вайфай но нет интернета

Мощность потребления процессора определяется по его TDP.

Мощность видеокарты в соответствии с характеристиками от производителя. Список моделей внушительный, но нужной GTX 1650 Super в списке нет. Выбрал GTX 1660, которая потребляет на 20 Вт больше.

В разделе «Система» можно указать количество модулей памяти, устройств SATA и даже устройств PATA. Каждый модуль памяти добавляет 4 Вт к рассчитываемой мощности, каждое устройство SATA или PATA — по 15 Вт. В качестве устройства SATA я укажу свой SSD М.2, так как в калькуляторе отсутствует отдельное поле для указания таких устройств.

В разделе «Охлаждение» можно указать дополнительные вентиляторы в системе и (или) систему водяного охлаждения. Каждый вентилятор добавляет 5 Вт.

В калькуляторе предусмотрены еще две установки — «Использование USB 3.1 Gen 2 для передачи энергии» и «Планируете ли вы разгонять компьютер или использовать разогнанные компоненты».

Спецификация USB 3.1 Gen 2 в теории подразумевает возможность передачи до 100 Вт мощности. И действительно, если установить здесь галочку, то рассчитанная потребляемая мощность компьютера увеличится на 100 Вт.

Если установить галочку в разделе «Планируете ли вы разгонять компьютер», то калькулятор добавит 15 % к данным.

Результаты

Рассчитанная мощность калькулятором Bequiet

Измеренная потребляемая мощность ПК

*за вычетом 20 Вт на реально установленную GTX 1650 Super

Калькулятор от Сoolermaster

Потребляемая мощность процессора определяется калькулятором по его TDP.

Материнская плата указывается через форм-фактор. По этому параметру добавляется определенная мощность (ATX — 70 Вт, Micro-ATX — 60 Вт).

Видеокарт в списке мало. Я не обнаружил ни GTX1650 Super, ни GTX1660. Выбрал близкую по мощности GTX1650 (85 Вт).

Память выбирается по типу и объему. Например, одна плашка DDR4 объемом 8 ГБ добавляет 3 Вт.

Есть возможность добавить SSD по его объему. Выбор SSD на 250 ГБ добавляет 40 Вт, что явно многовато.

HDD указывается по скорости вращения шпинделя и форм-фактору. При этом HDD с 7200RPM и 3.5″ добавляет 15 Вт, что в среднем не далеко от реальности.

Результаты

Рассчитанная мощность калькулятором Сoolermaster

Измеренная потребляемая мощность ПК

*с добавлением 15 Вт на реально установленную GTX 1650 Super

Калькулятор от MSI

Тут конфигурацию можно добавить уже более подробно, чем в двух предыдущих калькуляторах. Разработчики предлагают указывать устройства PCI, PCIe, внешние устройства USB и даже устройства с интерфейсом 1394 (FireWire) и карт-ридеры с фронтальной загрузкой.

Чтобы выбрать процессор, надо указать аж пять параметров — тут запрашивается даже его так называемый код. Мощность процессора также определяется по его TDP.

А вот SSD нет. С другой стороны, твердотельные накопители с разъемом SATA или М.2 можно условно указать в разделе «Доп. карты PCE Express» как устройство PCIe 3.0х1. Это даст 12 Вт прибавки.

Видеокарту GTX 1650 Super я опять не обнаружил в списке. Поэтому снова указал GTX 1660 и получил плюсом 120 Вт.

Каждое внешнее USB устройство добавляет 5 Вт. Одна плашка памяти DDR4 добавляет 3 Вт.

В калькуляторе есть раздел для устройств PCI. Например, SoundBlaster добавит 6 Вт, а RAID контроллер аж целых 20 Вт.

Калькулятор примечателен тем, что показывает рассчитываемую мощность сразу по мере ввода данных о комплектующих. Это позволяет оценивать вклад каждого компонента компьютера в общую потребляемую мощность.

Результаты

Рассчитанная мощность калькулятором MSI

Измеренная потребляемая мощность ПК

*за вычетом 20 Вт на реально установленную GTX 1650 Super

Калькулятор от Outervision

В калькуляторе есть возможность выбора платформы, разработчики этот раздел почему-то назвали Motherboard. По умолчанию выбран Desktop, который сразу в расчет добавляет 110 Вт мощности. Эта мощность и будет являться резервом для всех неучтенных потребителей или режимов работы.

Мощность процессора, как и везде, определяется по его TDP.

Одна из особенностей калькулятора — учет параметров разгона процессора (частота и напряжение питания ядер) и видеокарты.

Память выбирается по типу и объему. Кстати, для памяти частоту разгона указать не получится, что выглядит немного не логично.

Предусмотрен выбор всевозможных устройств хранения, даже дисков с интерфейсом IDE. Есть и SSD M.2, который добавил аж 1 Вт мощности. Обширный список устройств с интерфейсом PCI и PCIe и большой выбор прочих устройств, от USB до светодиодной ленты.

В итоге получаем расчетную максимальную потребляемую мощность системы, рекомендуемую минимальную мощность блока питания (Recommended PSU Wattage) и рекомендуемую мощность источника бесперебойного питания — ИБП (Recommended UPS rating).

Результаты

Рассчитанная мощность калькулятором Outervision

Измеренная потребляемая мощность ПК

*за вычетом 20 Вт на реально установленную GTX 1650 Super

в скобках указана рекомендуемая минимальная мощность БП

Считать или не считать — выводы и результаты

Подведем итог. Сведем все результаты в одну таблицу.

Измеренная мощность ПК

Калькулятор Bequiet

Калькулятор Сoolermaster

Калькулятор MSI

Калькулятор Outervision

Наиболее близкую к реальности мощность показывает калькулятор от Bequiet. Его разработчики рекомендуют использовать БП в режиме нагрузки от 50 до 80 %. Я бы остановился на рекомендации в 50 % — будет некий запас на комплектующие и те режимы работы, которые не учитывает калькулятор, плюс получим выигрыш в тишине. Тогда для рассматриваемой конфигурации ПК1 будет оптимальным использование БП мощностью 400 Вт. Может показаться, что этого маловато, но надо понимать, что калькулятор предполагает использование блоков питания от Bequiet.

Калькулятор Bequiet прост в использовании, но не учитывает множество устройств, которые могут быть установлены, а их потребление в сумме может быть очень даже весомым.

В калькуляторе от CoolerMaster добавлена возможность указывать типоразмер материнской платы. Это добавляет определенный резерв мощности, который может пригодиться для не учтенных комплектующих. Во всем остальном он схож с Bequiet и к нему можно применять те же рекомендации по выбору БП.

Калькулятор от CoolerMaster резервирует фиксированную мощность для неучтенных комплектующих и режимов работы.

Если в ПК присутствует много дополнительных устройств, то лучше все-таки использовать калькулятор от MSI или от Outervision. По результатам расчетов от MSI необходимо также выбирать БП с двукратным запасом.

А вот калькулятор Outervision выдает сразу рекомендуемую мощность БП. Для рассматриваемой конфигурации ПК1 калькулятор рекомендует БП мощностью 358 Вт. Округляем в большую сторону до ближайшей сотни — получаем 400 Вт.

При расчете можно учесть время использования компьютера за сутки. При этом калькулятор добавляет 5 % к рекомендуемой минимальной мощности блока питания, если ПК будет использоваться в режиме 24/7 против одного часа. Таким образом определяется некий запас надежности БП при круглосуточной работе ПК.

Калькулятор показывает предполагаемый ток по основным линиям БП, предлагает рассчитать экономию электроэнергии и финансовую выгоду при использовании БП с более продвинутыми сертификатами эффективности. Правда, применительно это только к БП от EVGA.

Калькулятор Outervision рассчитывает мощность источника бесперебойного питания (ИБП). Не забудьте указать диагональ используемого монитора.

Все калькуляторы грешат отсутствием некоторых моделей комплектующих. Наверное обычный пользователь не станет искать схожие по характеристикам модели, анализировать и сравнивать. Если возникнет такая проблема, то скорее всего он просто откажется от калькулятора и пойдет по форумам с вопросом какой БП выбрать.

Для таких юзеров есть и другие способы определения мощности БП. Например, можно ориентироваться на рекомендации производителей видеокарт. В частности, для GTX-1650 Super рекомендуется мощность БП 450 Вт, что в общем, соответствует значениям, которые получены при помощи калькуляторов с учетом рекомендаций.

Если же в ПК не используется отдельная видеокарта, то можно смело использовать современный блок питания с минимальной мощностью 300–400 Вт. Этого будет более чем достаточно для стандартной конфигурации настольного ПК.

Принимая во внимание поправки к программам, всеми перечисленными калькуляторами можно уверенно пользоваться. Результаты получаются вполне достоверными, а рекомендации по блокам питания — жизнеспособными. Для продвинутых пользователей больше подходит Outervision благодаря куче дополнительных опций и расширенным советам. Для владельцев ПК с минимальной конфигурацией можно использовать калькуляторы от Bequiet или Сoolermaster, хотя бы просто чтобы не запутаться. В любом случае онлайн-калькуляторы являются отличным инструментом для оценки потребляемой мощности вашего ПК и помогут в выборе блока питания или ИБП.

Как выбрать блок питания для компьютера можно почитать по ссылке.

Ссылка на основную публикацию
Adblock
detector