Newcomposers.ru

IT Мир
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула для расчета ошибки

Выборочное наблюдение: понятие, виды, ошибки выборки, оценка результатов. Примеры решения задач

Как известно, в статистике существует два способа наблюдения массовых явлений в зависимости от полноты охвата объекта: сплошное и несплошное. Разновидностью несплошного наблюдения является выборочное наблюдение.

Под выборочным наблюдением понимается несплошное наблюдение, при котором статистическому обследованию (наблюдению) подвергаются единицы изучаемой совокупности, отобранные случайным образом.

Выборочное наблюдение ставит перед собой задачу – по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов проведения статистического наблюдения и научно организованной работы по отбору единиц.

Совокупность отобранных для обследования единиц в статистике принято называть выборочной совокупностью, а совокупность единиц, из которых производится отбор, называют генеральной совокупностью. Основные характеристики генеральной и выборочной совокупности представлены в таблице 1.

При проведении выборочного наблюдения возникают систематические и случайные ошибки. Систематические ошибки возникают в силу нарушения правил отбора единиц в выборку. Изменив правила отбора, от таких ошибок можно избавиться.

Случайные ошибки возникают в силу несплошного характера обследования. Иначе их называют ошибками репрезентативности (представительности). Случайные ошибки разделяют на средние и предельные ошибки выборки, которые определяются как при расчете признака, так и при расчете доли.

Средние и предельные ошибки связаны следующим соотношением: Δ = tμ, где Δ — предельная ошибка выборки, μ — средняя ошибка выборки, t — коэффициент доверия, определяемый в зависимости от уровня вероятности. В таблице 2 приведены некоторые значения t, взятые из теории вероятностей.

Величина средней ошибки выборки рассчитывается дифференцированно в зависимости от способа отбора и процедуры выборки. Основные формулы для расчета ошибок выборки представлены в таблице 3.

Расчет средней и предельной ошибок выборки позволяет определить возможные пределы, в которых будут находиться характеристики генеральной совокупности.

Например, для выборочной средней такие пределы устанавливаются на основе следующих соотношений:

— пределы доли признака в генеральной совокупности р.

Примеры решения задач по теме «Выборочное наблюдение в статистике»

Задача 1. Имеется информация о выпуске продукции (работ, услуг), полученной на основе 10% выборочного наблюдения по предприятиям области:

Определить: 1) по предприятиям, включенным в выборку: а) средний размер произведенной продукции на одно предприятие; б) дисперсию объема производства; в) долю предприятий с объемом производства продукции более 400 тыс. руб.; 2) в целом по области с вероятностью 0,954 пределы, в которых можно ожидать: а) средний объем производства продукции на одно предприятие; б) долю предприятий с объемом производства продукции более 400 тыс. руб.; 3) общий объем выпуска продукции по области.

Решение

Для решения задачи расширим предложенную таблицу.

1) По предприятиям, включенным в выборку, средний размер произведенной продукции на одно предприятие

= 110800/400 = 277 тыс. руб.

Дисперсию объема производства вычислим упрощенным способом σ 2 = 35640000/400 – 277 2 = 89100 — 76229 = 12371.

Число предприятий, объем производства продукции которых превышает 400 тыс. руб. равно 36+12 = 48, а их доля равна ω = 48:400 = 0,12 = 12%.

2) Из теории вероятности известно, что при вероятности Р=0,954 коэффициент доверия t=2. Предельная ошибка выборки

= 2√12371:400 = 11,12 тыс. руб.

Установим границы генеральной средней: 277-11,12 ≤Хср≤ 277+11,12; 265,88 ≤Хср≤ 288,12

Предельная ошибка выборки доли предприятий

Определим границы генеральной доли: 0,12-0,03≤ р ≤0,12+0,03; 0,09≤ р ≤0,15

3) Поскольку рассматриваемая группа предприятий составляет 10% от общего числа предприятий области, то в целом по области насчитывается 4000 предприятий. Тогда общий объем выпуска продукции по области лежит в пределах 265,88×4000≤Q≤288,12×4000; 1063520 ≤ Q ≤ 1152480

Задача 2. По результатам контрольной проверки налоговыми службами 400 бизнес-структур, у 140 из них в налоговых декларациях не полностью указаны доходы, подлежащие налогообложению. Определите в генеральной совокупности (по всему району) долю бизнес-структур, скрывших часть доходов от уплаты налогов, с вероятностью 0,954.

Решение

По условию задачи число единиц в выборочной совокупности n=400, число единиц, обладающих рассматриваемым признаком m=140, вероятность Р=0,954.

Из теории вероятностей известно, что при вероятности Р=0,954 коэффициент доверия t=2.

Долю единиц, обладающих указанным признаком, определим по формуле: p=w+∆p, где w = m/n=140/400=0,35=35%,
а предельную ошибку признака ∆p получим из формулы: ∆p= t √w(1-w)/n = 2√0,35×0,65/400 ≈ 0,5 = 5%

Ответ: Доля бизнес-структур, скрывших часть доходов от уплаты налогов с вероятностью 0,954 равна 35±5%.

Другие статьи по данной теме:

  • назад:Показатели вариации: понятие, виды, формулы для вычислений
  • далее:Ряды динамики: понятие и классификация. Показатели уровней ряда динамики. Примеры решения задач
Читать еще:  Проверка на ошибки на английском

Список использованных источников

  1. Белобородова С.С. и др. Теория статистики: Типовые задачи с контрольными заданиями. Екатеринбург: Изд-во Урал. гос. экон. ун-та, 2001;
  2. Минашкин В.Г. и др. Курс лекций по теории статистики. / Московский международный институт эконометрики, информатики, финансов и права. — М., 2003;
  3. Сизова Т.М. Статистика: Учебное пособие. – СПб.: СПб ГУИТМО, 2005;
  4. Фёдорова Л.Н., Фёдорова А.Е. Методические указания по написанию контрольной работы по курсу «Статистика» для студентов экономических специальностей: УрГЭУ, 2007;

Ошибки экспериментальных данных

Исследовательская работа школьников связана с необходимостью правильно понимать и обрабатывать экспериментальные данные. Допустим в результате некоторого эксперимента ученик получил данные о содержании витамина С в лимоне 2,5 г/кг. Или значение частоты колебаний 375 Гц. Или длины побега 35 см. Что это говорит? Чаще всего, результат единичного измерения не говорит ни о чем, или говорит только о порядке измеряемой величины. Для оценки истинности данных эксперимента следует рассмотреть возможные причины ошибок и степень их влияния на измеряемую величину.

Приборные погрешности. Эта погрешность равна той доле шкалы прибора, до которой с уверенностью можно производить отсчет, что определяется конструкцией и ценой деления шкалы прибора.

Допустим, мы измеряем объем колбы мерным цилиндром с ценой деления 1 мл и получаем значение 242 мл. С какой точностью оно получено? По цене деления: 242 ± 0,5 мл. Пусть мы проделали серию измерений и рассчитали среднее значение 242,837569. Можем ли мы утверждать, что определили объем колбы с точностью до десятимиллионной? Конечно нет. Точность нашего определения не может превосходить точности отдельного измерения, и мы вправе лишь записать: 242,8 ± 0,5 мл. При этом последняя цифра является недостоверной, а все отброшенные цифры были незначащими.

Это надо учитывать при записи результатов наблюдений и рассчитанных данных. Объем воды 10 мл, отмеренный мерной пипеткой с ценой деления 0,01 мл правильно указать 10,00, а мерным цилиндром просто 10. Число значащих цифр в результате вычислений не может быть больше, чем в наименее точном исходном числе.

Приборные ошибки можно уменьшить, используя более совершенные приборы, но это связано, как правило, с большими материальными затратами. Кроме того, наряду с приборными ошибками можно выделить еще две группы ошибок, которые возникают в процессе эксперимента: систематические и случайные.

Систематические ошибки вызываются неправильной конструкцией приборов, их неисправностью, недостаточно продуманной методикой эксперимента, наличием неучтенных факторов, влияющих на измеряемую величину Например: школьник решил изучить влияние освещенности на рост побегов. этой целью он разместил одно растение на подоконнике, другое в темном углу кабинета. Но при этом он не учел, что температура воздуха вблизи окна 12 градусов, а в темном углу – 24 градуса. О том, что систематические ошибки могут иметь очень серьезные последствия свидетельствует и роман Жюль Верна, в котором отважный 15-летний капитан и его команда из-за систематической ошибки в показаниях компаса попали вместо одного материка на другой. Но характерной особенностью систематических ошибок является их принципиальная устранимость или возможность коррекции.

Случайные ошибки устранить нельзя, а также нельзя вывести никакой формулы для исправления полученного результата. В тоже время, влияние случайных ошибок может быть уменьшено проведением повторных измерений и статистической обработкой полученных данных.

Как показано на большом числе экспериментальных данных распределение результатов измерения некоторой постоянной величины описывается некоторым математическим выражением, которое называется «нормальным распределением» или гауссовым распределением», «распределением вероятности» и т.п. Графически оно выражается следующей кривой (рис 1):

Как рассчитать процент ошибки

Процентная ошибка или процентная ошибка выражает в процентах разницу между приблизительным или измеренным значением и точным или известным значением. Это используется в науке, чтобы сообщить разницу между измеренным или экспериментальным значением и истинным или точным значением. Вот как рассчитать процент ошибки, с примером расчета.

Ключевые моменты: процент ошибок

  • Цель расчета процентной погрешности состоит в том, чтобы измерить, насколько близко измеренное значение к истинному значению.
  • Процентная ошибка (процентная ошибка) — это разница между экспериментальным и теоретическим значением, деленная на теоретическое значение, умноженное на 100, чтобы получить процент.
  • В некоторых полях процентная ошибка всегда выражается как положительное число. В других случаях правильно иметь положительное или отрицательное значение. Знак может быть сохранен, чтобы определить, падают ли записанные значения выше или ниже ожидаемых значений.
  • Процент ошибок является одним из типов ошибок. Абсолютная и относительная погрешность — два других распространенных вычисления. Процент ошибок является частью всестороннего анализа ошибок.
  • Ключом к правильному сообщению процентной ошибки является то, чтобы знать, нужно ли сбрасывать знак (положительный или отрицательный) в расчете, и сообщать значение, используя правильное количество значащих цифр.
Читать еще:  Как правильно пишется слово ошибка

Формула процентной ошибки

Процентная ошибка — это разница между измеренным и известным значением, деленная на известное значение, умноженное на 100%.

Для многих приложений процент ошибки выражается как положительное значение. Абсолютное значение ошибки делится на принятое значение и выражается в процентах.

| принятое значение — экспериментальное значение | принятое значение х 100%

Для химии и других наук принято сохранять отрицательное значение. Важна ли ошибка положительная или отрицательная. Например, вы не ожидаете, что будет иметь место положительная процентная ошибка при сравнении фактического теоретического выхода в химической реакции. Если бы было рассчитано положительное значение, это дало бы подсказки относительно потенциальных проблем с процедурой или неучтенных реакций.

При сохранении знака ошибки вычисление представляет собой экспериментальное или измеренное значение минус известное или теоретическое значение, деленное на теоретическое значение и умноженное на 100%.

процентная ошибка = экспериментальное значение — теоретическое значение / теоретическое значение х 100%

Этапы расчета процента ошибок

  1. Вычтите одно значение из другого. Порядок не имеет значения, если вы отбрасываете знак, но вы вычитаете теоретическое значение из экспериментального значения, если сохраняете отрицательные знаки. Это значение является вашей «ошибкой».
  2. Разделите ошибку на точное или идеальное значение (не на ваше экспериментальное или измеренное значение). Это даст десятичное число.
  3. Преобразуйте десятичное число в процент, умножив его на 100.
  4. Добавьте символ процента или%, чтобы сообщить о вашем процентном значении ошибки.

Пример расчета процента ошибок

В лаборатории вам дают блок алюминия. Вы измеряете размеры блока и его смещение в контейнере с известным объемом воды. Вы рассчитываете плотность блока из алюминия равной 2,68 г / см. 3 , Вы посмотрите на плотность алюминиевого блока при комнатной температуре и обнаружите, что она составляет 2,70 г / см. 3 , Рассчитайте процентную погрешность вашего измерения.

  1. Вычтите одно значение из другого:
    2.68 — 2.70 = -0.02
  2. В зависимости от того, что вам нужно, вы можете отказаться от любого отрицательного знака (принять абсолютное значение): 0,02
    Это ошибка.
  3. Разделите ошибку на истинное значение: 0,02 / 2,70 = 0,0074074
  4. Умножьте это значение на 100%, чтобы получить процентную ошибку:
    0,0074074 х 100% = 0,74% (выражено с использованием 2 значащих цифр).
    Значимые цифры важны в науке. Если вы сообщаете об ответе, используя слишком много или слишком мало, он может считаться неправильным, даже если вы правильно настроили проблему.

Процент ошибок по сравнению с абсолютной и относительной ошибкой

Процентная ошибка связана с абсолютной ошибкой и относительной ошибкой. Разница между экспериментальным и известным значением является абсолютной ошибкой. Когда вы делите это число на известное значение, вы получаете относительную ошибку. Процентная ошибка — это относительная ошибка, умноженная на 100%.

Стандартная ошибка средней арифметической

Среднее арифметическое, как известно, используется для получения обобщающей характеристики некоторого набора данных. Если данные более-менее однородны и в них нет аномальных наблюдений (выбросов), то среднее хорошо обобщает данные, сведя к минимуму влияние случайных факторов (они взаимопогашаются при сложении).

Когда анализируемые данные представляют собой выборку (которая состоит из случайных значений), то среднее арифметическое часто (но не всегда) выступает в роли приближенной оценки математического ожидания. Почему приближенной? Потому что среднее арифметическое – это величина, которая зависит от набора случайных чисел, и, следовательно, сама является случайной величиной. При повторных экспериментах (даже в одних и тех же условиях) средние будут отличаться друг от друга.

Для того, чтобы на основе статистического анализа данных делать корректные выводы, необходимо оценить возможный разброс полученного результата. Для этого рассчитываются различные показатели вариации. Но то исходные данные. И как мы только что установили, среднее арифметическое также обладает разбросом, который необходимо оценить и учитывать в дальнейшем (в выводах, в выборе метода анализа и т.д.).

Интуитивно понятно, что разброс средней должен быть как-то связан с разбросом исходных данных. Основной характеристикой разброса средней выступает та же дисперсия.

Дисперсия выборочных данных – это средний квадрат отклонения от средней, и рассчитать ее по исходным данным не составляет труда, например, в Excel предусмотрены специальные функции. Однако, как же рассчитать дисперсию средней, если в распоряжении есть только одна выборка и одно среднее арифметическое?

Читать еще:  Отправка почты ошибка не работает

Расчет дисперсии и стандартной ошибки средней арифметической

Чтобы получить дисперсию средней арифметической нет необходимости проводить множество экспериментов, достаточно иметь только одну выборку. Это легко доказать. Для начала вспомним, что средняя арифметическая (простая) рассчитывается по формуле:

где xi – значения переменной,
n – количество значений.

Теперь учтем два свойства дисперсии, согласно которым, 1) — постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат и 2) — дисперсия суммы независимых случайных величин равняется сумме соответствующих дисперсий. Предполагается, что каждое случайное значение xi обладает одинаковым разбросом, поэтому несложно вывести формулу дисперсии средней арифметической:

Используя более привычные обозначения, формулу записывают как:

где σ 2 – это дисперсия, случайной величины, причем генеральная.

На практике же, генеральная дисперсия известна далеко не всегда, точнее совсем редко, поэтому в качестве оной используют выборочную дисперсию:

Стандартное отклонение средней арифметической называется стандартной ошибкой средней и рассчитывается, как квадратный корень из дисперсии.

Формула стандартной ошибки средней при использовании генеральной дисперсии

Формула стандартной ошибки средней при использовании выборочной дисперсии

Последняя формула на практике используется чаще всего, т.к. генеральная дисперсия обычно не известна. Чтобы не вводить новые обозначения, стандартную ошибку средней обычно записывают в виде соотношения стандартного отклонения выборки и корня объема выборки.

Назначение и свойство стандартной ошибки средней арифметической

Стандартная ошибка средней много, где используется. И очень полезно понимать ее свойства. Посмотрим еще раз на формулу стандартной ошибки средней:

Числитель – это стандартное отклонение выборки и здесь все понятно. Чем больше разброс данных, тем больше стандартная ошибка средней – прямо пропорциональная зависимость.

Посмотрим на знаменатель. Здесь находится квадратный корень из объема выборки. Соответственно, чем больше объем выборки, тем меньше стандартная ошибка средней. Для наглядности изобразим на одной диаграмме график нормально распределенной переменной со средней равной 10, сигмой – 3, и второй график – распределение средней арифметической этой же переменной, полученной по 16-ти наблюдениям (которое также будет нормальным).

Судя по формуле, разброс стандартной ошибки средней должен быть в 4 раза (корень из 16) меньше, чем разброс исходных данных, что и видно на рисунке выше. Чем больше наблюдений, тем меньше разброс средней.

Казалось бы, что для получения наиболее точной средней достаточно использовать максимально большую выборку и тогда стандартная ошибка средней будет стремиться к нулю, а сама средняя, соответственно, к математическому ожиданию. Однако квадратный корень объема выборки в знаменателе говорит о том, что связь между точностью выборочной средней и размером выборки не является линейной. Например, увеличение выборки с 20-ти до 50-ти наблюдений, то есть на 30 значений или в 2,5 раза, уменьшает стандартную ошибку средней только на 36%, а со 100-а до 130-ти наблюдений (на те же 30 значений), снижает разброс данных лишь на 12%.

Лучше всего изобразить эту мысль в виде графика зависимости стандартной ошибки средней от размера выборки. Пусть стандартное отклонение равно 10 (на форму графика это не влияет).

Видно, что примерно после 50-ти значений, уменьшение стандартной ошибки средней резко замедляется, после 100-а – наклон постепенно становится почти нулевым.

Таким образом, при достижении некоторого размера выборки ее дальнейшее увеличение уже почти не сказывается на точности средней. Этот факт имеет далеко идущие последствия. Например, при проведении выборочного обследования населения (опроса) чрезмерное увеличение выборки ведет к неоправданным затратам, т.к. точность почти не меняется. Именно поэтому количество опрошенных редко превышает 1,5 тысячи человек. Точность при таком размере выборки часто является достаточной, а дальнейшее увеличение выборки – нецелесообразным.

Подведем итог. Расчет дисперсии и стандартной ошибки средней имеет довольно простую формулу и обладает полезным свойством, связанным с тем, что относительно хорошая точность средней достигается уже при 100 наблюдениях (в этом случае стандартная ошибка средней становится в 10 раз меньше, чем стандартное отклонение выборки). Больше, конечно, лучше, но бесконечно увеличивать объем выборки не имеет практического смысла. Хотя, все зависит от поставленных задач и цены ошибки. В некоторых опросах участие принимают десятки тысяч людей.

Дисперсия и стандартная ошибка средней имеют большое практическое значение. Они используются в проверке гипотез и расчете доверительных интервалов.

Ссылка на основную публикацию
Adblock
detector